3.1.99 \(\int \frac {x (a+b \csc ^{-1}(c x))}{d+e x^2} \, dx\) [99]

Optimal. Leaf size=507 \[ \frac {\left (a+b \csc ^{-1}(c x)\right ) \log \left (1-\frac {i c \sqrt {-d} e^{i \csc ^{-1}(c x)}}{\sqrt {e}-\sqrt {c^2 d+e}}\right )}{2 e}+\frac {\left (a+b \csc ^{-1}(c x)\right ) \log \left (1+\frac {i c \sqrt {-d} e^{i \csc ^{-1}(c x)}}{\sqrt {e}-\sqrt {c^2 d+e}}\right )}{2 e}+\frac {\left (a+b \csc ^{-1}(c x)\right ) \log \left (1-\frac {i c \sqrt {-d} e^{i \csc ^{-1}(c x)}}{\sqrt {e}+\sqrt {c^2 d+e}}\right )}{2 e}+\frac {\left (a+b \csc ^{-1}(c x)\right ) \log \left (1+\frac {i c \sqrt {-d} e^{i \csc ^{-1}(c x)}}{\sqrt {e}+\sqrt {c^2 d+e}}\right )}{2 e}-\frac {\left (a+b \csc ^{-1}(c x)\right ) \log \left (1-e^{2 i \csc ^{-1}(c x)}\right )}{e}-\frac {i b \text {PolyLog}\left (2,-\frac {i c \sqrt {-d} e^{i \csc ^{-1}(c x)}}{\sqrt {e}-\sqrt {c^2 d+e}}\right )}{2 e}-\frac {i b \text {PolyLog}\left (2,\frac {i c \sqrt {-d} e^{i \csc ^{-1}(c x)}}{\sqrt {e}-\sqrt {c^2 d+e}}\right )}{2 e}-\frac {i b \text {PolyLog}\left (2,-\frac {i c \sqrt {-d} e^{i \csc ^{-1}(c x)}}{\sqrt {e}+\sqrt {c^2 d+e}}\right )}{2 e}-\frac {i b \text {PolyLog}\left (2,\frac {i c \sqrt {-d} e^{i \csc ^{-1}(c x)}}{\sqrt {e}+\sqrt {c^2 d+e}}\right )}{2 e}+\frac {i b \text {PolyLog}\left (2,e^{2 i \csc ^{-1}(c x)}\right )}{2 e} \]

[Out]

-(a+b*arccsc(c*x))*ln(1-(I/c/x+(1-1/c^2/x^2)^(1/2))^2)/e+1/2*(a+b*arccsc(c*x))*ln(1-I*c*(I/c/x+(1-1/c^2/x^2)^(
1/2))*(-d)^(1/2)/(e^(1/2)-(c^2*d+e)^(1/2)))/e+1/2*(a+b*arccsc(c*x))*ln(1+I*c*(I/c/x+(1-1/c^2/x^2)^(1/2))*(-d)^
(1/2)/(e^(1/2)-(c^2*d+e)^(1/2)))/e+1/2*(a+b*arccsc(c*x))*ln(1-I*c*(I/c/x+(1-1/c^2/x^2)^(1/2))*(-d)^(1/2)/(e^(1
/2)+(c^2*d+e)^(1/2)))/e+1/2*(a+b*arccsc(c*x))*ln(1+I*c*(I/c/x+(1-1/c^2/x^2)^(1/2))*(-d)^(1/2)/(e^(1/2)+(c^2*d+
e)^(1/2)))/e+1/2*I*b*polylog(2,(I/c/x+(1-1/c^2/x^2)^(1/2))^2)/e-1/2*I*b*polylog(2,-I*c*(I/c/x+(1-1/c^2/x^2)^(1
/2))*(-d)^(1/2)/(e^(1/2)-(c^2*d+e)^(1/2)))/e-1/2*I*b*polylog(2,I*c*(I/c/x+(1-1/c^2/x^2)^(1/2))*(-d)^(1/2)/(e^(
1/2)-(c^2*d+e)^(1/2)))/e-1/2*I*b*polylog(2,-I*c*(I/c/x+(1-1/c^2/x^2)^(1/2))*(-d)^(1/2)/(e^(1/2)+(c^2*d+e)^(1/2
)))/e-1/2*I*b*polylog(2,I*c*(I/c/x+(1-1/c^2/x^2)^(1/2))*(-d)^(1/2)/(e^(1/2)+(c^2*d+e)^(1/2)))/e

________________________________________________________________________________________

Rubi [A]
time = 0.98, antiderivative size = 507, normalized size of antiderivative = 1.00, number of steps used = 26, number of rules used = 9, integrand size = 19, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.474, Rules used = {5349, 4817, 4721, 3798, 2221, 2317, 2438, 4825, 4615} \begin {gather*} \frac {\left (a+b \csc ^{-1}(c x)\right ) \log \left (1-\frac {i c \sqrt {-d} e^{i \csc ^{-1}(c x)}}{\sqrt {e}-\sqrt {c^2 d+e}}\right )}{2 e}+\frac {\left (a+b \csc ^{-1}(c x)\right ) \log \left (1+\frac {i c \sqrt {-d} e^{i \csc ^{-1}(c x)}}{\sqrt {e}-\sqrt {c^2 d+e}}\right )}{2 e}+\frac {\left (a+b \csc ^{-1}(c x)\right ) \log \left (1-\frac {i c \sqrt {-d} e^{i \csc ^{-1}(c x)}}{\sqrt {c^2 d+e}+\sqrt {e}}\right )}{2 e}+\frac {\left (a+b \csc ^{-1}(c x)\right ) \log \left (1+\frac {i c \sqrt {-d} e^{i \csc ^{-1}(c x)}}{\sqrt {c^2 d+e}+\sqrt {e}}\right )}{2 e}-\frac {\log \left (1-e^{2 i \csc ^{-1}(c x)}\right ) \left (a+b \csc ^{-1}(c x)\right )}{e}-\frac {i b \text {Li}_2\left (-\frac {i c \sqrt {-d} e^{i \csc ^{-1}(c x)}}{\sqrt {e}-\sqrt {d c^2+e}}\right )}{2 e}-\frac {i b \text {Li}_2\left (\frac {i c \sqrt {-d} e^{i \csc ^{-1}(c x)}}{\sqrt {e}-\sqrt {d c^2+e}}\right )}{2 e}-\frac {i b \text {Li}_2\left (-\frac {i c \sqrt {-d} e^{i \csc ^{-1}(c x)}}{\sqrt {e}+\sqrt {d c^2+e}}\right )}{2 e}-\frac {i b \text {Li}_2\left (\frac {i c \sqrt {-d} e^{i \csc ^{-1}(c x)}}{\sqrt {e}+\sqrt {d c^2+e}}\right )}{2 e}+\frac {i b \text {Li}_2\left (e^{2 i \csc ^{-1}(c x)}\right )}{2 e} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(x*(a + b*ArcCsc[c*x]))/(d + e*x^2),x]

[Out]

((a + b*ArcCsc[c*x])*Log[1 - (I*c*Sqrt[-d]*E^(I*ArcCsc[c*x]))/(Sqrt[e] - Sqrt[c^2*d + e])])/(2*e) + ((a + b*Ar
cCsc[c*x])*Log[1 + (I*c*Sqrt[-d]*E^(I*ArcCsc[c*x]))/(Sqrt[e] - Sqrt[c^2*d + e])])/(2*e) + ((a + b*ArcCsc[c*x])
*Log[1 - (I*c*Sqrt[-d]*E^(I*ArcCsc[c*x]))/(Sqrt[e] + Sqrt[c^2*d + e])])/(2*e) + ((a + b*ArcCsc[c*x])*Log[1 + (
I*c*Sqrt[-d]*E^(I*ArcCsc[c*x]))/(Sqrt[e] + Sqrt[c^2*d + e])])/(2*e) - ((a + b*ArcCsc[c*x])*Log[1 - E^((2*I)*Ar
cCsc[c*x])])/e - ((I/2)*b*PolyLog[2, ((-I)*c*Sqrt[-d]*E^(I*ArcCsc[c*x]))/(Sqrt[e] - Sqrt[c^2*d + e])])/e - ((I
/2)*b*PolyLog[2, (I*c*Sqrt[-d]*E^(I*ArcCsc[c*x]))/(Sqrt[e] - Sqrt[c^2*d + e])])/e - ((I/2)*b*PolyLog[2, ((-I)*
c*Sqrt[-d]*E^(I*ArcCsc[c*x]))/(Sqrt[e] + Sqrt[c^2*d + e])])/e - ((I/2)*b*PolyLog[2, (I*c*Sqrt[-d]*E^(I*ArcCsc[
c*x]))/(Sqrt[e] + Sqrt[c^2*d + e])])/e + ((I/2)*b*PolyLog[2, E^((2*I)*ArcCsc[c*x])])/e

Rule 2221

Int[(((F_)^((g_.)*((e_.) + (f_.)*(x_))))^(n_.)*((c_.) + (d_.)*(x_))^(m_.))/((a_) + (b_.)*((F_)^((g_.)*((e_.) +
 (f_.)*(x_))))^(n_.)), x_Symbol] :> Simp[((c + d*x)^m/(b*f*g*n*Log[F]))*Log[1 + b*((F^(g*(e + f*x)))^n/a)], x]
 - Dist[d*(m/(b*f*g*n*Log[F])), Int[(c + d*x)^(m - 1)*Log[1 + b*((F^(g*(e + f*x)))^n/a)], x], x] /; FreeQ[{F,
a, b, c, d, e, f, g, n}, x] && IGtQ[m, 0]

Rule 2317

Int[Log[(a_) + (b_.)*((F_)^((e_.)*((c_.) + (d_.)*(x_))))^(n_.)], x_Symbol] :> Dist[1/(d*e*n*Log[F]), Subst[Int
[Log[a + b*x]/x, x], x, (F^(e*(c + d*x)))^n], x] /; FreeQ[{F, a, b, c, d, e, n}, x] && GtQ[a, 0]

Rule 2438

Int[Log[(c_.)*((d_) + (e_.)*(x_)^(n_.))]/(x_), x_Symbol] :> Simp[-PolyLog[2, (-c)*e*x^n]/n, x] /; FreeQ[{c, d,
 e, n}, x] && EqQ[c*d, 1]

Rule 3798

Int[((c_.) + (d_.)*(x_))^(m_.)*tan[(e_.) + Pi*(k_.) + (f_.)*(x_)], x_Symbol] :> Simp[I*((c + d*x)^(m + 1)/(d*(
m + 1))), x] - Dist[2*I, Int[(c + d*x)^m*E^(2*I*k*Pi)*(E^(2*I*(e + f*x))/(1 + E^(2*I*k*Pi)*E^(2*I*(e + f*x))))
, x], x] /; FreeQ[{c, d, e, f}, x] && IntegerQ[4*k] && IGtQ[m, 0]

Rule 4615

Int[(Cos[(c_.) + (d_.)*(x_)]*((e_.) + (f_.)*(x_))^(m_.))/((a_) + (b_.)*Sin[(c_.) + (d_.)*(x_)]), x_Symbol] :>
Simp[(-I)*((e + f*x)^(m + 1)/(b*f*(m + 1))), x] + (Int[(e + f*x)^m*(E^(I*(c + d*x))/(a - Rt[a^2 - b^2, 2] - I*
b*E^(I*(c + d*x)))), x] + Int[(e + f*x)^m*(E^(I*(c + d*x))/(a + Rt[a^2 - b^2, 2] - I*b*E^(I*(c + d*x)))), x])
/; FreeQ[{a, b, c, d, e, f}, x] && IGtQ[m, 0] && PosQ[a^2 - b^2]

Rule 4721

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)/(x_), x_Symbol] :> Subst[Int[(a + b*x)^n*Cot[x], x], x, ArcSin[c*
x]] /; FreeQ[{a, b, c}, x] && IGtQ[n, 0]

Rule 4817

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> Int[
ExpandIntegrand[(a + b*ArcSin[c*x])^n, (f*x)^m*(d + e*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[c^
2*d + e, 0] && IGtQ[n, 0] && IntegerQ[p] && IntegerQ[m]

Rule 4825

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)/((d_) + (e_.)*(x_)), x_Symbol] :> Subst[Int[(a + b*x)^n*(Cos[x]/(
c*d + e*Sin[x])), x], x, ArcSin[c*x]] /; FreeQ[{a, b, c, d, e}, x] && IGtQ[n, 0]

Rule 5349

Int[((a_.) + ArcCsc[(c_.)*(x_)]*(b_.))^(n_.)*(x_)^(m_.)*((d_.) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> -Subst[Int[
(e + d*x^2)^p*((a + b*ArcSin[x/c])^n/x^(m + 2*(p + 1))), x], x, 1/x] /; FreeQ[{a, b, c, d, e, n}, x] && IGtQ[n
, 0] && IntegerQ[m] && IntegerQ[p]

Rubi steps

\begin {align*} \int \frac {x \left (a+b \csc ^{-1}(c x)\right )}{d+e x^2} \, dx &=-\text {Subst}\left (\int \frac {a+b \sin ^{-1}\left (\frac {x}{c}\right )}{x \left (e+d x^2\right )} \, dx,x,\frac {1}{x}\right )\\ &=-\text {Subst}\left (\int \left (\frac {a+b \sin ^{-1}\left (\frac {x}{c}\right )}{e x}-\frac {d x \left (a+b \sin ^{-1}\left (\frac {x}{c}\right )\right )}{e \left (e+d x^2\right )}\right ) \, dx,x,\frac {1}{x}\right )\\ &=-\frac {\text {Subst}\left (\int \frac {a+b \sin ^{-1}\left (\frac {x}{c}\right )}{x} \, dx,x,\frac {1}{x}\right )}{e}+\frac {d \text {Subst}\left (\int \frac {x \left (a+b \sin ^{-1}\left (\frac {x}{c}\right )\right )}{e+d x^2} \, dx,x,\frac {1}{x}\right )}{e}\\ &=-\frac {\text {Subst}\left (\int (a+b x) \cot (x) \, dx,x,\csc ^{-1}(c x)\right )}{e}+\frac {d \text {Subst}\left (\int \left (-\frac {\sqrt {-d} \left (a+b \sin ^{-1}\left (\frac {x}{c}\right )\right )}{2 d \left (\sqrt {e}-\sqrt {-d} x\right )}+\frac {\sqrt {-d} \left (a+b \sin ^{-1}\left (\frac {x}{c}\right )\right )}{2 d \left (\sqrt {e}+\sqrt {-d} x\right )}\right ) \, dx,x,\frac {1}{x}\right )}{e}\\ &=\frac {i \left (a+b \csc ^{-1}(c x)\right )^2}{2 b e}+\frac {(2 i) \text {Subst}\left (\int \frac {e^{2 i x} (a+b x)}{1-e^{2 i x}} \, dx,x,\csc ^{-1}(c x)\right )}{e}-\frac {\sqrt {-d} \text {Subst}\left (\int \frac {a+b \sin ^{-1}\left (\frac {x}{c}\right )}{\sqrt {e}-\sqrt {-d} x} \, dx,x,\frac {1}{x}\right )}{2 e}+\frac {\sqrt {-d} \text {Subst}\left (\int \frac {a+b \sin ^{-1}\left (\frac {x}{c}\right )}{\sqrt {e}+\sqrt {-d} x} \, dx,x,\frac {1}{x}\right )}{2 e}\\ &=\frac {i \left (a+b \csc ^{-1}(c x)\right )^2}{2 b e}-\frac {\left (a+b \csc ^{-1}(c x)\right ) \log \left (1-e^{2 i \csc ^{-1}(c x)}\right )}{e}+\frac {b \text {Subst}\left (\int \log \left (1-e^{2 i x}\right ) \, dx,x,\csc ^{-1}(c x)\right )}{e}-\frac {\sqrt {-d} \text {Subst}\left (\int \frac {(a+b x) \cos (x)}{\frac {\sqrt {e}}{c}-\sqrt {-d} \sin (x)} \, dx,x,\csc ^{-1}(c x)\right )}{2 e}+\frac {\sqrt {-d} \text {Subst}\left (\int \frac {(a+b x) \cos (x)}{\frac {\sqrt {e}}{c}+\sqrt {-d} \sin (x)} \, dx,x,\csc ^{-1}(c x)\right )}{2 e}\\ &=-\frac {\left (a+b \csc ^{-1}(c x)\right ) \log \left (1-e^{2 i \csc ^{-1}(c x)}\right )}{e}-\frac {(i b) \text {Subst}\left (\int \frac {\log (1-x)}{x} \, dx,x,e^{2 i \csc ^{-1}(c x)}\right )}{2 e}+\frac {\sqrt {-d} \text {Subst}\left (\int \frac {e^{i x} (a+b x)}{\frac {\sqrt {e}}{c}-\frac {\sqrt {c^2 d+e}}{c}-i \sqrt {-d} e^{i x}} \, dx,x,\csc ^{-1}(c x)\right )}{2 e}+\frac {\sqrt {-d} \text {Subst}\left (\int \frac {e^{i x} (a+b x)}{\frac {\sqrt {e}}{c}+\frac {\sqrt {c^2 d+e}}{c}-i \sqrt {-d} e^{i x}} \, dx,x,\csc ^{-1}(c x)\right )}{2 e}-\frac {\sqrt {-d} \text {Subst}\left (\int \frac {e^{i x} (a+b x)}{\frac {\sqrt {e}}{c}-\frac {\sqrt {c^2 d+e}}{c}+i \sqrt {-d} e^{i x}} \, dx,x,\csc ^{-1}(c x)\right )}{2 e}-\frac {\sqrt {-d} \text {Subst}\left (\int \frac {e^{i x} (a+b x)}{\frac {\sqrt {e}}{c}+\frac {\sqrt {c^2 d+e}}{c}+i \sqrt {-d} e^{i x}} \, dx,x,\csc ^{-1}(c x)\right )}{2 e}\\ &=\frac {\left (a+b \csc ^{-1}(c x)\right ) \log \left (1-\frac {i c \sqrt {-d} e^{i \csc ^{-1}(c x)}}{\sqrt {e}-\sqrt {c^2 d+e}}\right )}{2 e}+\frac {\left (a+b \csc ^{-1}(c x)\right ) \log \left (1+\frac {i c \sqrt {-d} e^{i \csc ^{-1}(c x)}}{\sqrt {e}-\sqrt {c^2 d+e}}\right )}{2 e}+\frac {\left (a+b \csc ^{-1}(c x)\right ) \log \left (1-\frac {i c \sqrt {-d} e^{i \csc ^{-1}(c x)}}{\sqrt {e}+\sqrt {c^2 d+e}}\right )}{2 e}+\frac {\left (a+b \csc ^{-1}(c x)\right ) \log \left (1+\frac {i c \sqrt {-d} e^{i \csc ^{-1}(c x)}}{\sqrt {e}+\sqrt {c^2 d+e}}\right )}{2 e}-\frac {\left (a+b \csc ^{-1}(c x)\right ) \log \left (1-e^{2 i \csc ^{-1}(c x)}\right )}{e}+\frac {i b \text {Li}_2\left (e^{2 i \csc ^{-1}(c x)}\right )}{2 e}-\frac {b \text {Subst}\left (\int \log \left (1-\frac {i \sqrt {-d} e^{i x}}{\frac {\sqrt {e}}{c}-\frac {\sqrt {c^2 d+e}}{c}}\right ) \, dx,x,\csc ^{-1}(c x)\right )}{2 e}-\frac {b \text {Subst}\left (\int \log \left (1+\frac {i \sqrt {-d} e^{i x}}{\frac {\sqrt {e}}{c}-\frac {\sqrt {c^2 d+e}}{c}}\right ) \, dx,x,\csc ^{-1}(c x)\right )}{2 e}-\frac {b \text {Subst}\left (\int \log \left (1-\frac {i \sqrt {-d} e^{i x}}{\frac {\sqrt {e}}{c}+\frac {\sqrt {c^2 d+e}}{c}}\right ) \, dx,x,\csc ^{-1}(c x)\right )}{2 e}-\frac {b \text {Subst}\left (\int \log \left (1+\frac {i \sqrt {-d} e^{i x}}{\frac {\sqrt {e}}{c}+\frac {\sqrt {c^2 d+e}}{c}}\right ) \, dx,x,\csc ^{-1}(c x)\right )}{2 e}\\ &=\frac {\left (a+b \csc ^{-1}(c x)\right ) \log \left (1-\frac {i c \sqrt {-d} e^{i \csc ^{-1}(c x)}}{\sqrt {e}-\sqrt {c^2 d+e}}\right )}{2 e}+\frac {\left (a+b \csc ^{-1}(c x)\right ) \log \left (1+\frac {i c \sqrt {-d} e^{i \csc ^{-1}(c x)}}{\sqrt {e}-\sqrt {c^2 d+e}}\right )}{2 e}+\frac {\left (a+b \csc ^{-1}(c x)\right ) \log \left (1-\frac {i c \sqrt {-d} e^{i \csc ^{-1}(c x)}}{\sqrt {e}+\sqrt {c^2 d+e}}\right )}{2 e}+\frac {\left (a+b \csc ^{-1}(c x)\right ) \log \left (1+\frac {i c \sqrt {-d} e^{i \csc ^{-1}(c x)}}{\sqrt {e}+\sqrt {c^2 d+e}}\right )}{2 e}-\frac {\left (a+b \csc ^{-1}(c x)\right ) \log \left (1-e^{2 i \csc ^{-1}(c x)}\right )}{e}+\frac {i b \text {Li}_2\left (e^{2 i \csc ^{-1}(c x)}\right )}{2 e}+\frac {(i b) \text {Subst}\left (\int \frac {\log \left (1-\frac {i \sqrt {-d} x}{\frac {\sqrt {e}}{c}-\frac {\sqrt {c^2 d+e}}{c}}\right )}{x} \, dx,x,e^{i \csc ^{-1}(c x)}\right )}{2 e}+\frac {(i b) \text {Subst}\left (\int \frac {\log \left (1+\frac {i \sqrt {-d} x}{\frac {\sqrt {e}}{c}-\frac {\sqrt {c^2 d+e}}{c}}\right )}{x} \, dx,x,e^{i \csc ^{-1}(c x)}\right )}{2 e}+\frac {(i b) \text {Subst}\left (\int \frac {\log \left (1-\frac {i \sqrt {-d} x}{\frac {\sqrt {e}}{c}+\frac {\sqrt {c^2 d+e}}{c}}\right )}{x} \, dx,x,e^{i \csc ^{-1}(c x)}\right )}{2 e}+\frac {(i b) \text {Subst}\left (\int \frac {\log \left (1+\frac {i \sqrt {-d} x}{\frac {\sqrt {e}}{c}+\frac {\sqrt {c^2 d+e}}{c}}\right )}{x} \, dx,x,e^{i \csc ^{-1}(c x)}\right )}{2 e}\\ &=\frac {\left (a+b \csc ^{-1}(c x)\right ) \log \left (1-\frac {i c \sqrt {-d} e^{i \csc ^{-1}(c x)}}{\sqrt {e}-\sqrt {c^2 d+e}}\right )}{2 e}+\frac {\left (a+b \csc ^{-1}(c x)\right ) \log \left (1+\frac {i c \sqrt {-d} e^{i \csc ^{-1}(c x)}}{\sqrt {e}-\sqrt {c^2 d+e}}\right )}{2 e}+\frac {\left (a+b \csc ^{-1}(c x)\right ) \log \left (1-\frac {i c \sqrt {-d} e^{i \csc ^{-1}(c x)}}{\sqrt {e}+\sqrt {c^2 d+e}}\right )}{2 e}+\frac {\left (a+b \csc ^{-1}(c x)\right ) \log \left (1+\frac {i c \sqrt {-d} e^{i \csc ^{-1}(c x)}}{\sqrt {e}+\sqrt {c^2 d+e}}\right )}{2 e}-\frac {\left (a+b \csc ^{-1}(c x)\right ) \log \left (1-e^{2 i \csc ^{-1}(c x)}\right )}{e}-\frac {i b \text {Li}_2\left (-\frac {i c \sqrt {-d} e^{i \csc ^{-1}(c x)}}{\sqrt {e}-\sqrt {c^2 d+e}}\right )}{2 e}-\frac {i b \text {Li}_2\left (\frac {i c \sqrt {-d} e^{i \csc ^{-1}(c x)}}{\sqrt {e}-\sqrt {c^2 d+e}}\right )}{2 e}-\frac {i b \text {Li}_2\left (-\frac {i c \sqrt {-d} e^{i \csc ^{-1}(c x)}}{\sqrt {e}+\sqrt {c^2 d+e}}\right )}{2 e}-\frac {i b \text {Li}_2\left (\frac {i c \sqrt {-d} e^{i \csc ^{-1}(c x)}}{\sqrt {e}+\sqrt {c^2 d+e}}\right )}{2 e}+\frac {i b \text {Li}_2\left (e^{2 i \csc ^{-1}(c x)}\right )}{2 e}\\ \end {align*}

________________________________________________________________________________________

Mathematica [B] Both result and optimal contain complex but leaf count is larger than twice the leaf count of optimal. \(1123\) vs. \(2(507)=1014\).
time = 0.32, size = 1123, normalized size = 2.21 \begin {gather*} \frac {i b \pi ^2-4 i b \pi \csc ^{-1}(c x)+8 i b \csc ^{-1}(c x)^2-16 i b \text {ArcSin}\left (\frac {\sqrt {1-\frac {i \sqrt {e}}{c \sqrt {d}}}}{\sqrt {2}}\right ) \text {ArcTan}\left (\frac {\left (-i c \sqrt {d}+\sqrt {e}\right ) \cot \left (\frac {1}{4} \left (\pi +2 \csc ^{-1}(c x)\right )\right )}{\sqrt {c^2 d+e}}\right )-16 i b \text {ArcSin}\left (\frac {\sqrt {1+\frac {i \sqrt {e}}{c \sqrt {d}}}}{\sqrt {2}}\right ) \text {ArcTan}\left (\frac {\left (i c \sqrt {d}+\sqrt {e}\right ) \cot \left (\frac {1}{4} \left (\pi +2 \csc ^{-1}(c x)\right )\right )}{\sqrt {c^2 d+e}}\right )-2 b \pi \log \left (1+\frac {\left (\sqrt {e}-\sqrt {c^2 d+e}\right ) e^{-i \csc ^{-1}(c x)}}{c \sqrt {d}}\right )+4 b \csc ^{-1}(c x) \log \left (1+\frac {\left (\sqrt {e}-\sqrt {c^2 d+e}\right ) e^{-i \csc ^{-1}(c x)}}{c \sqrt {d}}\right )-8 b \text {ArcSin}\left (\frac {\sqrt {1-\frac {i \sqrt {e}}{c \sqrt {d}}}}{\sqrt {2}}\right ) \log \left (1+\frac {\left (\sqrt {e}-\sqrt {c^2 d+e}\right ) e^{-i \csc ^{-1}(c x)}}{c \sqrt {d}}\right )-2 b \pi \log \left (1+\frac {\left (-\sqrt {e}+\sqrt {c^2 d+e}\right ) e^{-i \csc ^{-1}(c x)}}{c \sqrt {d}}\right )+4 b \csc ^{-1}(c x) \log \left (1+\frac {\left (-\sqrt {e}+\sqrt {c^2 d+e}\right ) e^{-i \csc ^{-1}(c x)}}{c \sqrt {d}}\right )-8 b \text {ArcSin}\left (\frac {\sqrt {1+\frac {i \sqrt {e}}{c \sqrt {d}}}}{\sqrt {2}}\right ) \log \left (1+\frac {\left (-\sqrt {e}+\sqrt {c^2 d+e}\right ) e^{-i \csc ^{-1}(c x)}}{c \sqrt {d}}\right )-2 b \pi \log \left (1-\frac {\left (\sqrt {e}+\sqrt {c^2 d+e}\right ) e^{-i \csc ^{-1}(c x)}}{c \sqrt {d}}\right )+4 b \csc ^{-1}(c x) \log \left (1-\frac {\left (\sqrt {e}+\sqrt {c^2 d+e}\right ) e^{-i \csc ^{-1}(c x)}}{c \sqrt {d}}\right )+8 b \text {ArcSin}\left (\frac {\sqrt {1+\frac {i \sqrt {e}}{c \sqrt {d}}}}{\sqrt {2}}\right ) \log \left (1-\frac {\left (\sqrt {e}+\sqrt {c^2 d+e}\right ) e^{-i \csc ^{-1}(c x)}}{c \sqrt {d}}\right )-2 b \pi \log \left (1+\frac {\left (\sqrt {e}+\sqrt {c^2 d+e}\right ) e^{-i \csc ^{-1}(c x)}}{c \sqrt {d}}\right )+4 b \csc ^{-1}(c x) \log \left (1+\frac {\left (\sqrt {e}+\sqrt {c^2 d+e}\right ) e^{-i \csc ^{-1}(c x)}}{c \sqrt {d}}\right )+8 b \text {ArcSin}\left (\frac {\sqrt {1-\frac {i \sqrt {e}}{c \sqrt {d}}}}{\sqrt {2}}\right ) \log \left (1+\frac {\left (\sqrt {e}+\sqrt {c^2 d+e}\right ) e^{-i \csc ^{-1}(c x)}}{c \sqrt {d}}\right )-8 b \csc ^{-1}(c x) \log \left (1-e^{2 i \csc ^{-1}(c x)}\right )+2 b \pi \log \left (\sqrt {e}-\frac {i \sqrt {d}}{x}\right )+2 b \pi \log \left (\sqrt {e}+\frac {i \sqrt {d}}{x}\right )+4 a \log \left (d+e x^2\right )+4 i b \text {PolyLog}\left (2,\frac {\left (\sqrt {e}-\sqrt {c^2 d+e}\right ) e^{-i \csc ^{-1}(c x)}}{c \sqrt {d}}\right )+4 i b \text {PolyLog}\left (2,\frac {\left (-\sqrt {e}+\sqrt {c^2 d+e}\right ) e^{-i \csc ^{-1}(c x)}}{c \sqrt {d}}\right )+4 i b \text {PolyLog}\left (2,-\frac {\left (\sqrt {e}+\sqrt {c^2 d+e}\right ) e^{-i \csc ^{-1}(c x)}}{c \sqrt {d}}\right )+4 i b \text {PolyLog}\left (2,\frac {\left (\sqrt {e}+\sqrt {c^2 d+e}\right ) e^{-i \csc ^{-1}(c x)}}{c \sqrt {d}}\right )+4 i b \text {PolyLog}\left (2,e^{2 i \csc ^{-1}(c x)}\right )}{8 e} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(x*(a + b*ArcCsc[c*x]))/(d + e*x^2),x]

[Out]

(I*b*Pi^2 - (4*I)*b*Pi*ArcCsc[c*x] + (8*I)*b*ArcCsc[c*x]^2 - (16*I)*b*ArcSin[Sqrt[1 - (I*Sqrt[e])/(c*Sqrt[d])]
/Sqrt[2]]*ArcTan[(((-I)*c*Sqrt[d] + Sqrt[e])*Cot[(Pi + 2*ArcCsc[c*x])/4])/Sqrt[c^2*d + e]] - (16*I)*b*ArcSin[S
qrt[1 + (I*Sqrt[e])/(c*Sqrt[d])]/Sqrt[2]]*ArcTan[((I*c*Sqrt[d] + Sqrt[e])*Cot[(Pi + 2*ArcCsc[c*x])/4])/Sqrt[c^
2*d + e]] - 2*b*Pi*Log[1 + (Sqrt[e] - Sqrt[c^2*d + e])/(c*Sqrt[d]*E^(I*ArcCsc[c*x]))] + 4*b*ArcCsc[c*x]*Log[1
+ (Sqrt[e] - Sqrt[c^2*d + e])/(c*Sqrt[d]*E^(I*ArcCsc[c*x]))] - 8*b*ArcSin[Sqrt[1 - (I*Sqrt[e])/(c*Sqrt[d])]/Sq
rt[2]]*Log[1 + (Sqrt[e] - Sqrt[c^2*d + e])/(c*Sqrt[d]*E^(I*ArcCsc[c*x]))] - 2*b*Pi*Log[1 + (-Sqrt[e] + Sqrt[c^
2*d + e])/(c*Sqrt[d]*E^(I*ArcCsc[c*x]))] + 4*b*ArcCsc[c*x]*Log[1 + (-Sqrt[e] + Sqrt[c^2*d + e])/(c*Sqrt[d]*E^(
I*ArcCsc[c*x]))] - 8*b*ArcSin[Sqrt[1 + (I*Sqrt[e])/(c*Sqrt[d])]/Sqrt[2]]*Log[1 + (-Sqrt[e] + Sqrt[c^2*d + e])/
(c*Sqrt[d]*E^(I*ArcCsc[c*x]))] - 2*b*Pi*Log[1 - (Sqrt[e] + Sqrt[c^2*d + e])/(c*Sqrt[d]*E^(I*ArcCsc[c*x]))] + 4
*b*ArcCsc[c*x]*Log[1 - (Sqrt[e] + Sqrt[c^2*d + e])/(c*Sqrt[d]*E^(I*ArcCsc[c*x]))] + 8*b*ArcSin[Sqrt[1 + (I*Sqr
t[e])/(c*Sqrt[d])]/Sqrt[2]]*Log[1 - (Sqrt[e] + Sqrt[c^2*d + e])/(c*Sqrt[d]*E^(I*ArcCsc[c*x]))] - 2*b*Pi*Log[1
+ (Sqrt[e] + Sqrt[c^2*d + e])/(c*Sqrt[d]*E^(I*ArcCsc[c*x]))] + 4*b*ArcCsc[c*x]*Log[1 + (Sqrt[e] + Sqrt[c^2*d +
 e])/(c*Sqrt[d]*E^(I*ArcCsc[c*x]))] + 8*b*ArcSin[Sqrt[1 - (I*Sqrt[e])/(c*Sqrt[d])]/Sqrt[2]]*Log[1 + (Sqrt[e] +
 Sqrt[c^2*d + e])/(c*Sqrt[d]*E^(I*ArcCsc[c*x]))] - 8*b*ArcCsc[c*x]*Log[1 - E^((2*I)*ArcCsc[c*x])] + 2*b*Pi*Log
[Sqrt[e] - (I*Sqrt[d])/x] + 2*b*Pi*Log[Sqrt[e] + (I*Sqrt[d])/x] + 4*a*Log[d + e*x^2] + (4*I)*b*PolyLog[2, (Sqr
t[e] - Sqrt[c^2*d + e])/(c*Sqrt[d]*E^(I*ArcCsc[c*x]))] + (4*I)*b*PolyLog[2, (-Sqrt[e] + Sqrt[c^2*d + e])/(c*Sq
rt[d]*E^(I*ArcCsc[c*x]))] + (4*I)*b*PolyLog[2, -((Sqrt[e] + Sqrt[c^2*d + e])/(c*Sqrt[d]*E^(I*ArcCsc[c*x])))] +
 (4*I)*b*PolyLog[2, (Sqrt[e] + Sqrt[c^2*d + e])/(c*Sqrt[d]*E^(I*ArcCsc[c*x]))] + (4*I)*b*PolyLog[2, E^((2*I)*A
rcCsc[c*x])])/(8*e)

________________________________________________________________________________________

Maple [C] Result contains higher order function than in optimal. Order 9 vs. order 4.
time = 2.31, size = 420, normalized size = 0.83

method result size
derivativedivides \(\frac {\frac {a \,c^{2} \ln \left (c^{2} e \,x^{2}+c^{2} d \right )}{2 e}-\frac {b \,c^{2} \mathrm {arccsc}\left (c x \right ) \ln \left (1+\frac {i}{c x}+\sqrt {1-\frac {1}{c^{2} x^{2}}}\right )}{e}+\frac {i b \,c^{2} \dilog \left (1+\frac {i}{c x}+\sqrt {1-\frac {1}{c^{2} x^{2}}}\right )}{e}-\frac {i b \,c^{2} \dilog \left (\frac {i}{c x}+\sqrt {1-\frac {1}{c^{2} x^{2}}}\right )}{e}-\frac {i b \,c^{2} \left (\munderset {\textit {\_R1} =\RootOf \left (c^{2} d \,\textit {\_Z}^{4}+\left (-2 c^{2} d -4 e \right ) \textit {\_Z}^{2}+c^{2} d \right )}{\sum }\frac {\left (\textit {\_R1}^{2} c^{2} d -c^{2} d -4 e \right ) \left (i \mathrm {arccsc}\left (c x \right ) \ln \left (\frac {\textit {\_R1} -\frac {i}{c x}-\sqrt {1-\frac {1}{c^{2} x^{2}}}}{\textit {\_R1}}\right )+\dilog \left (\frac {\textit {\_R1} -\frac {i}{c x}-\sqrt {1-\frac {1}{c^{2} x^{2}}}}{\textit {\_R1}}\right )\right )}{\textit {\_R1}^{2} c^{2} d -c^{2} d -2 e}\right )}{4 e}-\frac {i b \,c^{4} \left (\munderset {\textit {\_R1} =\RootOf \left (c^{2} d \,\textit {\_Z}^{4}+\left (-2 c^{2} d -4 e \right ) \textit {\_Z}^{2}+c^{2} d \right )}{\sum }\frac {\left (\textit {\_R1}^{2}-1\right ) \left (i \mathrm {arccsc}\left (c x \right ) \ln \left (\frac {\textit {\_R1} -\frac {i}{c x}-\sqrt {1-\frac {1}{c^{2} x^{2}}}}{\textit {\_R1}}\right )+\dilog \left (\frac {\textit {\_R1} -\frac {i}{c x}-\sqrt {1-\frac {1}{c^{2} x^{2}}}}{\textit {\_R1}}\right )\right )}{\textit {\_R1}^{2} c^{2} d -c^{2} d -2 e}\right ) d}{4 e}}{c^{2}}\) \(420\)
default \(\frac {\frac {a \,c^{2} \ln \left (c^{2} e \,x^{2}+c^{2} d \right )}{2 e}-\frac {b \,c^{2} \mathrm {arccsc}\left (c x \right ) \ln \left (1+\frac {i}{c x}+\sqrt {1-\frac {1}{c^{2} x^{2}}}\right )}{e}+\frac {i b \,c^{2} \dilog \left (1+\frac {i}{c x}+\sqrt {1-\frac {1}{c^{2} x^{2}}}\right )}{e}-\frac {i b \,c^{2} \dilog \left (\frac {i}{c x}+\sqrt {1-\frac {1}{c^{2} x^{2}}}\right )}{e}-\frac {i b \,c^{2} \left (\munderset {\textit {\_R1} =\RootOf \left (c^{2} d \,\textit {\_Z}^{4}+\left (-2 c^{2} d -4 e \right ) \textit {\_Z}^{2}+c^{2} d \right )}{\sum }\frac {\left (\textit {\_R1}^{2} c^{2} d -c^{2} d -4 e \right ) \left (i \mathrm {arccsc}\left (c x \right ) \ln \left (\frac {\textit {\_R1} -\frac {i}{c x}-\sqrt {1-\frac {1}{c^{2} x^{2}}}}{\textit {\_R1}}\right )+\dilog \left (\frac {\textit {\_R1} -\frac {i}{c x}-\sqrt {1-\frac {1}{c^{2} x^{2}}}}{\textit {\_R1}}\right )\right )}{\textit {\_R1}^{2} c^{2} d -c^{2} d -2 e}\right )}{4 e}-\frac {i b \,c^{4} \left (\munderset {\textit {\_R1} =\RootOf \left (c^{2} d \,\textit {\_Z}^{4}+\left (-2 c^{2} d -4 e \right ) \textit {\_Z}^{2}+c^{2} d \right )}{\sum }\frac {\left (\textit {\_R1}^{2}-1\right ) \left (i \mathrm {arccsc}\left (c x \right ) \ln \left (\frac {\textit {\_R1} -\frac {i}{c x}-\sqrt {1-\frac {1}{c^{2} x^{2}}}}{\textit {\_R1}}\right )+\dilog \left (\frac {\textit {\_R1} -\frac {i}{c x}-\sqrt {1-\frac {1}{c^{2} x^{2}}}}{\textit {\_R1}}\right )\right )}{\textit {\_R1}^{2} c^{2} d -c^{2} d -2 e}\right ) d}{4 e}}{c^{2}}\) \(420\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x*(a+b*arccsc(c*x))/(e*x^2+d),x,method=_RETURNVERBOSE)

[Out]

1/c^2*(1/2*a*c^2/e*ln(c^2*e*x^2+c^2*d)-b*c^2/e*arccsc(c*x)*ln(1+I/c/x+(1-1/c^2/x^2)^(1/2))+I*b*c^2/e*dilog(1+I
/c/x+(1-1/c^2/x^2)^(1/2))-I*b*c^2*dilog(I/c/x+(1-1/c^2/x^2)^(1/2))/e-1/4*I*b*c^2*sum((_R1^2*c^2*d-c^2*d-4*e)/(
_R1^2*c^2*d-c^2*d-2*e)*(I*arccsc(c*x)*ln((_R1-I/c/x-(1-1/c^2/x^2)^(1/2))/_R1)+dilog((_R1-I/c/x-(1-1/c^2/x^2)^(
1/2))/_R1)),_R1=RootOf(c^2*d*_Z^4+(-2*c^2*d-4*e)*_Z^2+c^2*d))/e-1/4*I*b*c^4*sum((_R1^2-1)/(_R1^2*c^2*d-c^2*d-2
*e)*(I*arccsc(c*x)*ln((_R1-I/c/x-(1-1/c^2/x^2)^(1/2))/_R1)+dilog((_R1-I/c/x-(1-1/c^2/x^2)^(1/2))/_R1)),_R1=Roo
tOf(c^2*d*_Z^4+(-2*c^2*d-4*e)*_Z^2+c^2*d))*d/e)

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(a+b*arccsc(c*x))/(e*x^2+d),x, algorithm="maxima")

[Out]

1/2*a*e^(-1)*log(x^2*e + d) + b*integrate(x*arctan2(1, sqrt(c*x + 1)*sqrt(c*x - 1))/(x^2*e + d), x)

________________________________________________________________________________________

Fricas [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(a+b*arccsc(c*x))/(e*x^2+d),x, algorithm="fricas")

[Out]

integral((b*x*arccsc(c*x) + a*x)/(x^2*e + d), x)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {x \left (a + b \operatorname {acsc}{\left (c x \right )}\right )}{d + e x^{2}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(a+b*acsc(c*x))/(e*x**2+d),x)

[Out]

Integral(x*(a + b*acsc(c*x))/(d + e*x**2), x)

________________________________________________________________________________________

Giac [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: RuntimeError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(a+b*arccsc(c*x))/(e*x^2+d),x, algorithm="giac")

[Out]

Exception raised: RuntimeError >> An error occurred running a Giac command:INPUT:sage2OUTPUT:Warning, integrat
ion of abs or sign assumes constant sign by intervals (correct if the argument is real):Check [abs(sageVARx)]s
ym2poly/r2sym(

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int \frac {x\,\left (a+b\,\mathrm {asin}\left (\frac {1}{c\,x}\right )\right )}{e\,x^2+d} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((x*(a + b*asin(1/(c*x))))/(d + e*x^2),x)

[Out]

int((x*(a + b*asin(1/(c*x))))/(d + e*x^2), x)

________________________________________________________________________________________